A MAP-Based Order Estimation Procedure for Sparse Channel Estimation

نویسندگان

  • Sajad Daei
  • Massoud Babaie-Zadeh
  • Christian Jutten
چکیده

Recently, there has been a growing interest in estimation of sparse channels as they are observed in underwater acoustic and ultrawideband channels. In this paper we present a new Bayesian sparse channel estimation (SCE) algorithm that, unlike traditional SCE methods, exploits noise statistical information to improve the estimates. The proposed method uses approximate maximum a posteriori probability (MAP) to detect the non-zero channel tap locations while least square estimation is used to determine the values of the channel taps. Computer simulations shows that the proposed algorithm outperforms the existing algorithms in terms of normalized mean squared error (NMSE) and approaches Cramér-Rao lower bound of the estimation. In addition, it has low computational cost when compared to the other algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Sparse Channel Estimation by Factor Graphs

The problem of estimating a sparse channel, i.e. a channel with a few non-zero taps, appears in various areas of communications. Recently, we have developed an algorithm based on iterative alternating minimization which iteratively detects the location and the value of the taps. This algorithms involves an approximate Maximum A Posteriori (MAP) probability scheme for detection of the location o...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015